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The derivation of interatomic potentials for metallic alloy glasses is discussed. First, a 
comparison is made between the derivation of the radial distribution function RDF (and 
its associated curves) and that of the interatomic pair potential 4(r) ,  starting from the 
same structure factor S(Q). This comparison illustrates how different components of the 
S(Q)  curve influence the course of the two derivations. A determination of the three 
interatomic pair potentials q5NiNi(r), dNidr), for a Ni,,P,, metallic glass is then 
given to illustrate the method. The use of such potentials in structural relaxation 
calculations is then discussed for both single component and binary cases. Comparison is 
made between calculated and experimental structure factor S(Q) curves with very 
encouraging results. Finally, the possible future extension of these calculations is 
examined. 

Key words: Interatomic potentials, radial distribution function, Ni,,P,, metallic glass, 
structure factor. 

1 INTRODUCTION 

We have discussed in a recent paper in this journal' the possibility of 
deriving the interatomic pair potentials from diffraction data on 
metallic alloy glasses, by using those methods applied originally to the 
study of simple liquid metals'. These involve deriving the direct 
correlation function c(r) from the structure factor S(Q) and the pair 
potential 4(r )  from c(r)  by using one of the established identities'. 

The motivation for this was to explore the general applicability of the 
method and to find whether the pair potentials obtained exhibited any 
particular features which might influence their use in relaxation and 
molecular dynamics calculations, rather than to try to suggest that 

* Permanent address: Department of Physics, Shandoug University, Jinan, Shandoug, 
Peoples Republic of China. 
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30 J.-C. LI AND N. COWLAM 

simple theory could be applied to such relatively complex systems as 
binary metallic glasses. 

Encouraging results were obtained in the preliminary work'. Specifi- 
cally, the derivation of the pair potential 4(r )  for a pseudo single- 
component system was found to lead, fairly straightforwardly, to curves 
with a minimum at the expected interatomic spacing and a well-depth 
of the correct magnitude'. Only the repulsive hard-core part of the 
potential was poorly represented because the identities used are strictly 
speaking asymptotic results which are not valid at small r values2. All 
the pair potential curves obtained exhibited positive and negative 
oscillations beyond the first minimum, which did not, however, follow 
the cos(2k,r)/r3 dependence of the Freidel oscillations. The derivation 
of the three independent pair potentials 4' ' ( r ) ,  412(r), 422(r) for a 
binary case turned out to be more difficult. As will be shown in Section 
3, the intermediate functions cI '(Q), c,,(Q), czz(Q) required depend on 
small differences in the three partial structure factors' S ,  l(Q), S12(Q), 
S2,(Q) which themselves are derived from (small) differences between 
three different total structure factors S ( Q )  measured experimentally. 
Thus the derivation of pair potentials, represents a second generation of 
analysis and makes extreme demands on the quality of the original 
experimental data. 

We have continued work in this area and recently achieved a 
successful derivation of all three pair potentials for a binary metallic 
glass Ni80P,04 rather than for just the majority (Ni-Ni) component in 
the Ni,,B,, glass of our original investigation'. In this present paper 
the derivations of both 4 ( r )  and radial distribution factor (RDF) curves 
are first compared and then details of the new derivation for Ni,,P,, 
presented. The pair potentials obtained in this work are then used in 
relaxation calculations to show that they lead to reasonable real-space 
structures and comparison is also made with relaxed structures derived 
using Lennard-Jones 6- 12 potentials. Details of this work have already 
been presented in abstract form5,,. 

2 STRUCTURAL MEASUREMENTS AND INTERATOMIC 
POTENTIALS FOR LIQUIDS AND GLASSES 

It was concluded in our previous investigation' that only the very best 
diffraction data currently available would permit an unambiguous 
determination of the three pair potentials for a binary glass to be made, 
in view of the extreme demands on the quality and consistency of the 
data in the analysis. It was crucial therefore, in the search for candidates 
to continue this work, to be able to identify those features of S(Q) curves 
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PAIR POTENTIALS FOR METALLIC GLASSES 31 
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Figure 1 The derivations of the reduced RDF G(r)  and the interatomic pair potential 
d(r), starting from the same structure factor S ( Q )  of a one-component liquid or glass, 
are shown schematically. The graphs on the left hand side show the normal route for 
structure determination, the product Q(S(Q)  - 1) which is Fourier transformed to give 
the reduced RDF G(r). On the right hand side the alternate derivation of #(r) is shown 
with graphs of c(Q) = 1 - l/S(Q), Qc(Q), and d(r)  = -kTc(r). The origin of each 
graph is shown by an open circle. 

which are most significant in determining a reliable 4 ( r )  function and 
also to monitor the effect of various uncertainties in S(Q) on the form of 
the +(r) which is obtained. 

Figure 1 shows schematically the two routes by which an experimen- 
tally-obtained structure factor curve S(Q) may be analysed. (A single 
component system is considerd here for convenience and it is supposed 
that all the corrections and the normalisation necessary to obtain S(Q) 
from the measured intensity distribution I (Q)  have been successfully 
completed.) On the left hand side of Figure 1 is the normal route for 
structural measurements. The quantity Q(S(Q) - 1) appears in the sine 
Fourier Transform used to obtain the reduced radial distribution 
function G(r) from which the RDF 47rr2p(r) may also be obtained. 

G(r) = 47cr(p(r) - po) = fi J Q(S(Q) - 1) sin Qr dQ (1) 
7 1 0  
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32 J.-C. LI AND N. COWLAM 

Although it is sometimes misleading to attempt to associate individual 
features of S(Q) or Q(S(Q) - 1) with particular features of G(r) it is well 
established that the first peak of Q(S(Q) - 1) is the most important part 
which largely determines the position of the first peak in G(r) and the 
wavelength of the oscillations in G(r) at larger radial distances. This 
correlation has been established in several ways; by the modified Bragg 
equations sometimes adopted for amorphous materials-as discussed 
by Klug and Alexander'; by the more direct analysis of the sine Fourier 
transform itself' and by a practical example in which the whole of the 
S(Q) was substituted by a single Gaussian centred at the first peak-see 
Cargillg, his Figure 12. This latter result has also been confirmed in the 
course of the present calculations by subdividing S(Q) and making 
transforms of various portions of the complete curve". The product 
Q(S(Q) - 1) appears in the transform, Eq. 1, so that the shape of S ( Q )  in 
the small Q region and the way S(Q)  approaches the limit S(0) has little 
influence on the form of G(r) and this has also been demonstrated by 
practical examples '. 

The derivation of 4 ( r )  from S(Q) is shown in the right-hand side of 
Figure 1. The c(Q) curve', 

1 

c(Q) = 1 -- I 
S(Q)  

is dominated by large negative values, of the order of a few hundreds, at 
small Q whose magnitudes are determined by the compressibility limit 
S(O), see Ref. 2 for example, while the steep rise of c(Q) up to the abscissa 
in influenced by the S(Q) values at the foot of the first peak. The first 
peak in S(Q)  gives an insignificantly small positive first peak in 
c(Q) % 0.7. The direct correlation function c(r)  is derived from the sine 
Fourier transform of Qc(Q) 

and from this the pair potential d(r)  can be obtained using the 
relation", 

$(r) = -kTc(r) (4) 
It is tempting, in view of the negative sign in Eq. (4), to associate the 
steep rise in c(Q) with the repulsive core part of &r). However, it is the 
product Qc(Q) which is quite different from c(Q), which is transformed. 
The product Qc(Q) effectively removes the value of the compressibility 
limit at Q = 0 (except as it influences the slope of Qc(Q) for small Q 
values) while the area under the Qc(Q) curve determines the 4(0) value. 
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PAIR POTENTIALS FOR METALLIC GLASSES 33 

In an extreme case as shown in Figure 1, the dominant, first negative 
peak of Qc(Q) effectively determines 4 ( r )  completely, so that there is no 
practical difference between the transform of the whole curve and the 
curve truncated at the first point it crosses the abscissa. In this case, the 
first maximum in S(Q)-which is so important in the transform to C(r), 
has virtually no influence in determining the form of $(r).  However, in 
real examples of binary alloys, the first negative peak in the equivalent 
Qcij(Q) curve may be very much less well developed, so that the first 
positive peak can also influence the precise position of the minimum of 
the potential well. Again this has been demonstrated by transforming 
various portions of a complete Qcij(Q) curve". 

3 THE DERIVATION OF PAIR POTENTIALS 
FOR NisoP,, METALLIC GLASS 

As discussed more fully in the previous work', the Eqs 2 ,3  and 4 above 
may be generalised for binary alloys and an identification made 

+ij(r) = - kTcij(r) where i = 1,2  ( 5 )  

The chief difference in the binary case is that the functions ciJ(Q) are 
now expressed in terms of differences between all three partial structure 
factors Sij(Q), so that 

c11 = KSll - 1)(1 + XZ(S22 - 1)) - XZ(Sl2 - 1>21/0 
c12 = (S12 - 1)/D 
c22  = C(S22 - 1x1 + Xl(S11 - 1)) - XI(S12 - 1)21/0 

(6) 

where 

D = c1 + Xl(S11 - 1)IU + x2(S22 - 111 - XlXZ(S12 - (7) 
and the Q dependence of ciJ(Q) and S,,(Q) has been omitted for brevity. 
This makes the accurate determination of the ciXQ) much more 
difficult. For example, only the pair potential of the majority 
constituent in a Ni6,B36 glass could be derived with any precision in 
our previous work'. 

However, there have been a number of recent determinations of 
partial structure factors of binary metallic glasses chiefly involving 
neutron experiments on isotope enriched samples'3-' *. In those cases, 
the quality of the results is enhanced by both the favourable condition- 
ing of the three simultaneous equations needed to derive the partial 
S(Q)'s (in comparison with earlier X-ray work) and the high statistical 

P.C.L. B 
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34 J.-C. LI AND N. COWLAM 

quality of data from the current neutron diffractometers. We have 
examined the results of these recent determinations of partial structure 
 factor^'^-'^ with a view to obtaining all three pair potentials by the 
route outline in Eqs 5, 6 and 7 above. The partial S(Q) curves for 
NislB,, glassI3 provided the first evidence that the method might be 
successful5 but required some small modification at  small Q values. 
However, the partial S ( Q )  curves for Ni,,P,, glass from the same 
laboratory4, have demonstrated unequivocally that the derivation can 
be made without any adjustment. It was only necessary to extrapolate 
the three curves SNiNi(Q), SNip(Q), SPp(Q) down to Q = 0 by lines which 
were drawn freehand and the ci,{Q) functions were obtained directly 
from the Sij(Q) using Eqs 6 and 7. The Fourier transforms of the cij(Q) 
were made and the pair potentials 4i,(r) obtained from Eq. 5 using a 
characteristic temperature of 300 K as before'. The resulting 4ij(r) are 
shown in the upper part of Figure 2 with Lennard-Jones 6-12 potentials 
superimposed, to provide the repulsive hard core. Once again it is found 
that all three pair potentials have their first minimum at values within 
5 % expected distances, based on the Goldschmidt diameter of nickel 
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Figure 2 The three pair potentials (a) &&i-), (b) &AT), (c) +NiP(i-)for Ni80P20 metallic 
glass obtained directly from the experimental partial structure factors4 are shown. 
Lennard-Jones potentials are superimposed (dotted lines) to provide the repulsive core 
of the potential. Figure 2a shows the &iNi(r) potential derived from experimental data 
on Ni63.72r36,3 glass16. Parameters for these derived potentials are given in Table 1. 
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PAIR POTENTIALS FOR METALLIC GLASSES 35 

Table 1 Parameters for the pair potentials shown in Figure 2 are given. c0 and ro are the depth 
and position of the potential minimum, rh the second minimum. r, and r2  are the radial distances 
to the positive maxima. 

Pair potential Potential well Positive oscillations 

E,, (ev) ro (A) rb (A) (ro) (A) r l  (A) r2 (A) r h o  

-0.19 2.53 - 2.48 3.56 6.29 1.41 2.49 
 NIP(^) -0.32 2.24 - 2.34 3.38 6.39 1.51 2.85 
dJPP(T) -0.06 2.10 4.72 2.20 3.1 1 6.24 1.49 2.98 

-0.10 2.56 - 2.48 3.61 6.90 1.37 2.69 

d%4nNi(r) 

dNsNi(r) 

2.48 8, and the tetrahedral covalent radius of phosphorus 1.1 A-see 
Table 1. The well depths E ,  for each potential are of the order of 
-0.1 eV (Table 1 )  and are commensurate with values obtained pre- 
viously and those quoted in the literature'. It is interesting that 4NiP(r) 
shows the deepest potential well of the three curves which is presumably 
an indication of strong chemical interactions between the two species. 
In addition whilst all three potential curves show quite strong oscilla- 
tions beyond the first minimum, in the case of rjpp(i) this results in two 
successive minima of almost equal depth. This may have interesting 
implications for the structures of TM,,met,, type glasses as discussed 
more fully in Section 5. 

The fourth curve in Figure 2 is the &iNi(r) pair potential derived by 
us from structural data on a Ni63.7Zr36.3 glass'6 using the same 
methods. This was chosen as a fairly representative example of a 
majority rjTMTM(r) pair potential (in showing well-developed oscilla- 
tions at large r values) for the trial relaxation calculations on a single 
component array to be described in Section 4.1. This potential is also 
shown with a 6-12 potential which provided the repulsive core. The 
oscillations in the pair potentials shown in Figure 2 appear to be more 
regularly developed than in the cases derived by us previously'. 
However, a cos(2k,r)/r3 dependence leads to a value k, - 0.8 A-' 
whilst the identification Q1 = 2k, for the first maximum in S(Q)  gives 
k, - 1.5 A-'-except for the first broad peak in S,AQ). This disagree- 
ment in the k, values was also observed in the earlier work'. 

4 RELAXATION CALCULATIONS ON DISORDERED 
ATOMIC ARRAYS 

It has been shown in the previous work' and in Section 3 above that 
pair potentials with the normally accepted characteristics can indeed be 
obtained from diffraction data for metallic alloy glasses. However, it is 
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36 J.-C. LI AND N. COWLAM 

important to try to assess the authenticity of these pair potentials and 
one way of doing this is by using them in structural relaxation 
calculations on model metallic glass arrays. In this section two such 
examples are presented-a trial case on a small single-component 
cluster and a second calculation on a larger binary array. Structural 
relaxation calculations are important not only in giving realistic 
densities to hand-built and computer models of metallic glass struc- 
tures, but also because of their relation to the low temperature heat 
treatments which are used to improve the magnetic properties of 
ferromagnetic metallic glasses. These heat treatments result in a loss of 
free volume. 

Structural relaxation calculations can be described as  follow^'^. The 
total force on an atom n at in in a glassy structure is given by the sum of 
pair forces between atoms 

If the atom n is displaced a distance S i n  while all the other atoms are 
kept fixed, then the change in the force is given by19, 

(9) 

(10) 

+ 6rn) = U r n )  + (61,. V)FnmCrnrn)  

The force-free position of atom n is then, 

F n d r n  + a r n )  = 0 
or 

so that the displacements 6_rn can be determined from Eq. 11 and the 61, 
for all atoms calculated in turn. This procedure can be done iteratively 
by computer. Usually fractions of 61, are added to a given atom in turn, 
to bring the force to zero, before proceeding to the next atom. 
Alternatively, as in the present program, the size of the step can be 
chosen automatically in relation to the magnitude of the force. Nine 
values of step between 0.03 8, and 0.0001 8, were available in the 
calculation. Surface effects can be very important in such calculations 
on finite arrays because the surface atoms experience less total force and 
this can lead to density gradients. In the present calculations these have 
been circumvented by means of a surface tension-type force. The 
magnitude of this force depended on the number of (absent) neighbours 
and the distance of the nth atom from its reduced complement of 
neighbours, while the direction was determined by the vector sum of the 
forces due to the neighbours present. The configurational energy was 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
0
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



PAIR POTENTIALS FOR METALLIC GLASSES 37 

monitored to test the effectiveness of the relaxation as the calculation 
proceeded. In this relatively simple kind of relaxation the effect of 
densification on the form of the force and potential curves is not taken 
into account, see Ref. 20 for example. 

4.1 

Trial calculations were made, as with the previous work', on a 
one-component structure. The pair potential shown in the 
lower part of Figure 2 was used together with a 6-12 potential to 
provide the repulsive core. The unchanged 6-12 potential was also used 
in a parallel calculation to provide a comparison. Both potentials were 
tabulated as data for the program in the form of 5000 values of 
interatomic force separated by 0.002 A for 0 -= r < 10 A. The atomic 
coordinates used as the starting point of the calculation were derived 
from position measurements of 140 polystyrene spheres, contained in a 
shallow curved dish to avoid regular (i.e. crystalline) geometries. This 
array had been used in a separate investigation*'. It is shown in its 
original form in the left hand side of Figure 3 together with the final, 
compact, spherical shape of the array after relaxation with the bound- 
ary forces applied. It took typically 20 iterative passes over the 140 
atoms present, calculating interatomic forces out to a range of 9 A, to 
produce a stable (change-free) structure. This took of the order of 25 

Relaxation of a one-component glassy structure 

n 

Figure 3 The 140 atom, single component array used in the trial relaxation calculation 
is shown in the left hand side of the Figure. The upper diagram shows the initial 
configuration and the lower diagram the final compact form after relaxation. In the 
right-hand side of the Figure the 530 atom binary array used in the relaxation 
calculation for NisoP,, glass is shown in its relaxed state. 

P.CL. c 
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38 J.-C. LI AND N. COWLAM 

minutes CPU time on an IBM 3083 computer. The structures produced 
by this relaxation, using both the potentials, were rather similar and 
showed the characteristic features expected for metallic alloy glasses. 
The pair correlation function g(r) = p(r)/p, can be evaluated readily 
from the atomic coordinates and is shown in Figure 4. The structure 
factor S ( Q )  can also be derived from g(r) in the usual way and is also 
shown in Figure 4. The 4NiNi(i) potential leads to a broader first peak in 
g(r) than the 6-12 potential and the magnitudes of the second peak and 
its shoulder and of the subsequent oscillations in g(r) were more reliably 
reproduced. In S(Q),  the &Ni(r) potentials again led to a second peak 
shoulder of the accepted form-which was not so well reproduced with 
the 6-12. We have previously observed that these split second peaks in 
g(r) and S(Q)  (which are characteristic of metallic glass structures) can 
be well reproduced in models built on surfaces having single or, as here, 
double curvature”. 

Rodiol distance r in A 

C 
9 
L 
0 
W 
L 
0 

- 

L - 
0 a 

L 

c u 
0 U 

E 
c ” 
2 L 

c vl 

ih; . 

ll h (0) 1 

O L L  0 2 4 6  8 1 0 1 2  

Scattering vector o in A” 

Figure 4 The pair correlation function g ( r )  = p(r) /p ,  derived from the coordinates of 
the 140 atom array after structural relaxation is shown together with the total structure 
factor S(Q)  derived from g(r).  The upper curve (a) corresponds in each case to the use of 
the composite q5NiNi(r) potential of Figure 2 and the lower curve (b) to the use of a 6-12 
potential. 
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Thus the conclusion of a trial calculation using a small array was that 
the derived +NiNi(r) performed at least as well as the 6-12 potential in a 
conventional relaxation calculation. 

4.2 

A second calculation was then performed to evaluate the three compo- 
site pair potentials made by combining the three curves +NiNi(r), +Nip(r), 
+pp(r) obtained from diffraction data on Ni,,P,, glass in Section 3, 
with 6- 12 potentials to provide a repulsive core as shown in Figure 2. 
The starting point in this case was an array of 530 equal sized 
polystyrene spheres constructed in the course of a separate 
investigation”. In order to portray this model (see Figure 3) 424 
spheres were given a diameter of 2.48 A (Ni) and 106 a diameter of 2.2 A 
(P)-although in a relaxation calculation the atomic size does not have 
the same strict meaning as in a hard-sphere model. The computer 
program was developed from that used for the relaxation of the single 
component array, but with the force chosen according to the types of 
atoms (Ni or P) out to the same range of 9 A. A consequence of these 
changes and the larger number of atoms present was that the new array 
needed up to 90 iterations before a stable state was obtained. This used 
up to 120 minutes CPU time. The 530 atom array is shown, after 
relaxation, in Figure 3. 

The structures obtained in these relaxation calculations were ev- 
aluated by first obtaining the partial pair correlation functions gij (r)  = 
pij (r) /poj  from the position coordinates of the appropriate atoms in the 
array. The central core of 380 atoms was used to avoid spurious effects 
due to the surface of the array. The partial structure factors S,,(Q) were 
then derived from the giJ(r) functions and compared directly with the 
experimental partial structure factors4 which formed the starting point 
of this work, in Section 3. The comparison is shown in Figure 5. The 
calculated S(Q)’s have been derived from the array relaxed via the 
composite potentials of Figure 2 and with a random distribution of 
phosphorus atoms throughout. Although the experimental SNiNi (Q)  and 
SNiP(Q) curves are reasonably well reproduced the agreement for Sp,(Q) 
is poor over the whole curve. In order to try and improve the agreement 
modifications were made to the starting array, to move the metalloid 
atoms apart. This was done by building two constraints into the way in 
which the atoms were labelled within the array. First, if atom i and 
atom j were both phosphorus and (ri - rjl < 2.2 A then atom j was 
replaced by nickel. Second, using each nickel atom as an origin in turn, 
the atoms within a sphere of radius 2.5A were examined and if no 

Relaxation of a Ni,,P,, glassy structure 
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40 J.-C. LI AND N. COWLAM 

vr 
c 

4- u 

U 

0 2 4 6 8 10 

Scattering vector Q i n  A-' 
Figure 5 The partial structure factors (a) SNiNi(Q); (b) S,dQ) and (c) S,,,(Q) derived 

from the 530atom array (solid line) are compared with the experimental curves4 
(dotted line). The structural relaxation has been made with the composite potentials of 
Figure 2 and a random arrangement of phosphorus atoms in the binary array. 

phosphorus atoms were found then the nickel atom at the origin was 
replaced by a phosphorus atom. In this way all first neighbour atom 
pairs were removed. Although a slight (- 5 %) excess concentration of 
phosphorus atoms developed at the surface after applying these con- 
straints, the alloy composition within the central 380 atom core of the 
array remained unchanged. 

Relaxation calculations were then repeated on the whole 530 atom 
array using composite and 6-12 potentials as before. The partial S(Q) 
curves which resulted are shown in Figure 6. As before these are derived 
from the central 380 atoms of the array. There is a great improvement in 
the reproduction of the S,,(Q) curve in this case, in fact the overall 
agreement between experiment and calculation is surprisingly good. 
Even quite minor features in the S(Q) curves such as those at  the feet of 
the first peak in SNiNi(Q)  and SNip(Q) are reasonably well reproduced. 
The main disagreements are in the height of the first peak in S,,(Q) and 
in the same curve around 5.5 k'. 

Finally, although the 6-12 potentials give broadly similar results to 
the composite potentials, in detail the S,,<Q) curves obtained do not 
show the same measure of agreement with the experimental curves. The 
most serious fault is that the position of the first (and other) peaks in the 
major partial SNiNi(Q) are predicted to occur at higher Q values than are 
observed, see Table 2. The tabulated force curves were checked to 
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Figure 6 The partial structure factors (a) S,,,,(Q); (b) S&Q) and (c) SNiP(Q) derived 

from the 530atom array (solid line) are compared with the experimental curves' 
(dotted line). The same potentials have been used as in Figure 5 but with the atoms of 
the array re-identified to avoid first neighbour phosphorus-phosphorous pairs. 

Table2 The partial coordination numbers obtained from the 580 atom binary 
array when structurally relaxed under different conditions, together with the peak 
positions of the partial structure factors derived from them, are compared with 
the experimental values4. 

Starting conditions First peak position in Partial coordination 
of binary array partial S,(Q) number from RDF's 

SNINI(Q) SNiAQ) SPP(Q) nNiNi nNiP npp 

Experiment 3.26 3.33 2.09 9.4 2.3 5.3 
Composite potentials 3.24 3.33 2.23 9.2 2.6 6.1 

Composite potentials 3.27 3.34 2.10 9.3 2.6 5.3 
random P atoms 

no P-P first 
neighbours 

random P atoms 

P-P first neighbours 

9.1 2.5 6.4 

6-12 potentials, no 3.33 3.41 2.16 9.1 2.5 4.5 

6-12 potentials 3.34 3.44 - 
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ensure that this could not be due to slightly different positions of zero 
force for the 6-12 and composite potentials. However, unlike the 
composite case, the 6-12 potential is attractive for all distances beyond 
the minimum. It is possible therefore that when the range over which 
the interatomic forces are calculated is substantial, that this might lead 
to an overdensification of the majority (nickel) component in the array, 
giving rise to slightly smaller values of interatomic distance and hence 
an expanded abscissa to the S N i N i ( Q )  curve. This effect would not arise 
to the same extent with an oscillatory force which changed sign several 
times over the range in which the interatomic forces were being 
computed. 

5 CONCLUSIONS 

These investigations have been undertaken to discover whether the 
methods for the determination of interatomic pair potentials of liquid 
metals might also work for metallic alloy glasses and to determine 
whether the potentials obtained might exhibit any distinctive features. 
Leaving aside the question of whether the theoretical results for a liquid 
metal in equilibrium (on which the method is based) can be applied 
equally well to a metastable metallic glass, together with the associated 
problem of the determination of the long wavelength limits of the 
structure factors, it appears nevertheless that useful results can be 
obtained in this area. 

Furthermore there is an additional bonus, that independently of the 
form of the pair potentials obtained, their derivation provides a very 
valuable monitor of the correctness of experimental curves particularly 
at small Q values. This has emerged from our examination of a number 
of the recent experimental determinations of partial structure factors for 
metallic alloy glasses and this will be described in detail elsewhere22. 

With regard to the form of the pair potential curves obtained, the 
accumulated evidence suggests that the oscillations in #(r) beyond the 
first minimum are real, while the relaxation calculations show that these 
oscillations are significant in determining the details of the glassy 
structure produced. This was shown by direct comparison of oscillatory 
and non-oscillatory (6- 12) potentials for single component, random 
and non-random binary arrays. It will obviously be interesting to 
establish whether such oscillatory potentials can be used in a ‘first 
principles’ derivation of metallic glass structure, say by molecular 
dynamics calculations-rather than the relaxation calculations under- 
taken here. 
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The most extreme form of oscillatory potential is observed in ~ $ ~ ~ ( r ) ,  
see Figure 2, in which two successive minima of almost equal depth are 
observed. This is interesting on account of the debate over the possible 
presence, or absence, of first neighbour metalloid-metalloid atoms in 
Transition metal,,metalloid,, type glasses such as NisoPZ,. In the 
1970's Polkz3 proposed an essentially interstitial model for TM,,metz, 
glasses in which first neighbour metalloid pairs were rigidly excluded. 
We have argued r e ~ e n t l y ' ~ - ~ ~  that small numbers of metalloid first 
neighbours may be more consistent with diffraction data than none. 
This is also supported by recent structural s i m u l a t i ~ n ~ ~ ~ ~ ~  which 
indicates that the metalloid atoms are too large to be accommodated 
interstitially at least at the 20 % concentration. A C$mctmet(r) potential 
with two minima is therefore interesting in that the first minimum 
might be associated with small numbers of met-met first neighbours 
(with a coordination number of say 1 0 . 5  atoms-much smaller than 
the 2.4 atoms expected in a random occupation of a 12 atom first 
neighbour shell). The second minimum could be associated with the 
more distant met-met pairs described in the original interstitial models 
of TM,,metz, glassesz3. At present, the success achieved in the 
relaxation calculation by the exclusion of first neighbour phosphorus 
atoms appears to contradict this kind of description of the potential 
with two minima but clearly such curves are worthy of further 
investigation. 

In our previous work' the hope was expressed that the derivation of 
all three pair potentials for binary metallic glasses might allow accurate 
models of their structures to be simulated successfully without con- 
straints being imposed. This has not happened for the relaxation 
calculations presented here, but this is likely to be a consequence of the 
relatively restricted atomic mobility in such structural rearrangements. 
An obvious next step is therefore to investigate the possibility that 
molecular dynamics simulations can overcome this restriction and 
create the appropriate structures for binary glasses outright and this is 
the subject of our current work. 
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